

AVM Task 3: Standards Development and Promulgation

MBE Summit NIST April 13, 2016

Berkeley, CA | Chennai, India

William Sobel
Chief Strategy Officer
System Insights

MTConnect Chief Architect

Background

Internet of Things

- Industrial vs. Everything Else
 - Highest potential Impact
 - \$1.2 3.7T
- Areas
 - Operations Optimization
 - Predictive Maintenance
 - Inventory Optimization
 - Health and Safety

McKinsey Global Institute THE INTERNET OF THINGS: MAPPING THE VALUE BEYOND THE HYPE JUNE 2015

New Economies 10 - 25 Years Autonomous On-Demand & Distributed 5-10 Years Outcome Based Economy Emergent Manufacturing Services & Data Monetization Present Operational Efficiency

World Economic Forum: Industrial Internet of Things: Unleashing the Potential of Connected Products and Services, Jan 2011

Intelligence Hierarchy

Digital Thread

Current Feedback

Digital Manufacturing Feedback

What is the value MBE?

Total output = 70T - 10% improvement from design efficiency? 30%?

Standards

Types of Standards

Types of Standards

Process	ISO-9000	ISO-27001	ISO-50001	CMMI
Semantic Models	ISA-95	STEP (AP-2XX)	QIF	
Transport Syntax	OPC/UA	MQTT	AMQP	MTConnect
Communication	TCP/IP	UDP	RS-422	XBee
Security	DES	SSL	TLS	KERBEROS

Requirements for Open Standards

- 1. Open Meeting
- 2. Consensus
- 3. Due Process
- 4. Open World
- 5. Open IPR

- 6. Open Change
- 7. Open Documents
- 8. Open Interface
- 9. Open Use
- 10. On-Going Support

Open Standards Requirements:

Ken Krechmer, Internation Center for Standards Research, USA [2008]

Network Effects

 Analytical simulation based model on standard concentration and adoption within supply chain

Table 1. Determinants and parameters simulating diffusion dynamics in supply networks

ID	Determinants	Parameters	Description
1	Communication intensity	Size of enterprise q _i	Size of an organization (define size distribution for each type)
2	Communication intensity	Number of sourcing relationships g _i	Sourced parts of agent i from different tier
3	Costs	Implementation costs K(q _i)	Costs to implement a standard
4	Costs	Maximum communication costs C(q _i)	Maximum savings per relationship
5	Communication partner influence	Communication cost savings C(q _i , q _j)	Reduction of communication costs for partners implementing the same standards
6	Daysonal nativally avmassive	Relationship stability between tiers p_c^{main}	Probability of transaction with main supplier
7	Personal network exposure	Number of suppliers n _c	Number of potential suppliers per sourced part
8	Opinion leadership (power)	Economic base power b_i^{eco}	Power sources other than size-based technological and economic power
9	Opinion leadership (power)	Technological knowledge b_i^{tech}	Network participant's technological knowledge
10	Opinion leadership (location)	Set of agents in tier $O_c \subset Agents$	Position (tier c) within the supply network
11	Intragroup pressure toward conformity	Market pressure functions	Pressure that partner agents can exert on the deciding agent to implement their standard

A Diffusion Model for Communication Standards in Supply Networks, M. Schwind, T. Stockheim, K. Weiss

Results

- High relationship stability (inflexible supply chain) leads to a decrease of std concentration
- Supply chain connectivity strongly influences the outcome in two ways
 - Higher tendency toward the standards' concentration since an increased connectivity reduces the probability of subnetworks
 - Shift of market pressure along the supply chains, leading to changed relevance of the tier organizations
- Market power and network topology strongly influence the propagation of standards along the supply chains
- Low relationship stability
- Highly connected supply chains
- Low centrality of supply structures
- Homogeneous market power

Open Standards Requirements: Ken Krechmer, Internation Center for Standards Research, USA [2008]

Example 1: Document Formats

- Microsoft Word is dominate interchange format for documents
- Issues:
 - Controlled by one company
 - Enterprise Standard
 - Is not Open
- Print Formats PDF ISO 36000-1
- OpenDocument Format 26300 (OASIS)
 - Still in development and becoming the standard for document interchange for non-Microsoft players
 - NATO has standardized on OpenDocument
 - Google is pushing to dislodge Microsoft
- The issue: docx \rightarrow ODF \rightarrow docx or docx \rightarrow ODF \rightarrow X \rightarrow PDF

Example 2: GNU/Linux vs. Microsoft

- Back in '90s Microsoft dominant in market. There were a few options: Microsoft on desktop, Solaris, HPUX, Digital VMS/OS10, and IBM AIX. Solaris, HPUX, and AIX are all POSIX based (standardized, but porting is still difficult).
- Companies standardized on proprietary technologies
- Cost of development environments compilers and technology was prohibitive
- In 80's we believed that only *large* companies could develop something as complex as an operating system
- Linux disrupted all proprietary server side software
- Cost of development went to ~\$0. Hosting went to ~\$0
- Services emerged and technology expanded exponentially
- R vs. S-Plus & SAS.

What was needed?

- GNU Posix tools, compiler, and technology
- LINUX Kernel
- 100's of 1000's of programmers
- Control of the blessed product
- New business models (RedHat, etc...)
- Why open source?
 - For a small company, how can we get 1000's of programmers working on a product?
 - Where do you make your money?
- University involvement research (Hadoop & R)

Market First

Build it and they will come....

And if they don't...

Market Impact

- A: Initial market increases faster
- B: Size of market is greater
- C: Longer tail and durability

IT Standardization: The Billion Dollar Strategy, John Hurd & Jim Isaak, 2008 IGI Global

Aligning with Market Need

- What are the top drivers that will drive the adoption?
- Impediments and Drivers
- Documents → Collaboration
- New Economies
- What are the largest opportunities in the industry?
- In the US?
- Globally?

Services

Standards are Contracts

- Open Contracts are key to connecting services
- Allows low (read ~\$0) cost integration
- Democratizes Innovation

New Economies 10 - 25 Years Autonomous On-Demand & Distributed 5-10 Years Outcome Based Economy Emergent Manufacturing Services & Data Monetization Present Operational Efficiency

World Economic Forum: Industrial Internet of Things: Unleashing the Potential of Connected Products and Services, Jan 2011

Questions?